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Usually in the presence of a background noise an increased effort put in controlling a system stabilizes its
behavior. Rarely it is thought that an increased control of the system can lead to a looser response and,
therefore, to a poorer performance. Strikingly there are many systems that show this weird behavior; examples
can be drawn form physical, biological, and social systems. Until now no simple and general mechanism
underlying such behaviors has been identified. Here we show that such a mechanism, named stochastic
resonant damping, can be provided by the interplay between the background noise and the control exerted on
the system. We experimentally verify our prediction on a physical model system based on a colloidal particle
held in an oscillating optical potential. Our result adds a tool for the study of intrinsically noisy phenomena,
joining the many constructive facets of noise identified in the past decades—for example, stochastic resonance,
noise-induced activation, and Brownian ratchets.
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I. INTRODUCTION

The presence of noise is ubiquitous in natural, social, and
technological phenomena, ranging from nanoscopic systems
such as biomolecules and nanodevices to macroscopic sys-
tems such as financial markets and human organizations.
Noise introduces disorder and random fluctuations into any
type of system; and often this is deleterious for the system
performance.

In recent years considerable and increasing attention has
been focused on the constructive role of noise in nature: the
influence of noise is not restricted to destructive and thermo-
dynamic effects, but can have positive outcomes. Examples
include stochastic resonance �1�, in which the addition of
noise to an input signal improves the output signal-to-noise
ratio �SNR�; Brownian ratchets and motors �2�, in which the
thermal jiggling of a Brownian particle can be rectified by a
periodic asymmetric or oscillating potential; and noise-
induced activation �3,4�, in which a minimal averaged resi-
dence time occurs at an optimal time scale of the modulation
of a potential barrier.

Despite that, there are systems for which noise is still a
nuisance. In these cases it is desirable to stabilize the
system—i.e., to reduce its output noise. One straightforward
way to achieve this is to increase the effort that confines the
system near an equilibrium state and therefore reduces its
intrinsic noise. However, for many systems the confinement
parameters are noisy; i.e., the confinement process intro-
duces a second noise �parametric noise� in the system. This
is the case, in particular, of any nanoscopic system, such as a
biomolecule or a nanodevice, since the role of thermal fluc-
tuations in the confinement parameters cannot be neglected.
For example, the mechanism of motor protein motion in the
cytoskeleton has been successfully modeled by Brownian
ratchets: the motor protein kinesin can be driven by the ac-
tion of both the thermal noise and an additive colored noise,
whose finite correlation time corresponds to the kinesin bind-
ing events and subsequent energy release through hydrolysis

�2,5,6�. In �7� the interplay between an externally added
noise and the intrinsic noise of systems that relax fast toward
a stationary state was analyzed theoretically. It was found
that increasing the intensity of the external noise can reduce
the total noise of the system. The output noise reduction is
due to the fact that the system is driven into states with lower
intrinsic noise, where the confinement effort is effectively
greater.

Here, we study theoretically and experimentally the situ-
ation when the confinement effort is increased at a fixed
intrinsic and parametric noise level. Counterintuitively, we
show that in most cases an increased confinement effort over
a certain threshold leads to a poorer system performance.
More specifically, we show that the minimum output vari-
ance is typically, but not always, achieved for a finite con-
finement effort, and therefore to increase the confinement
effort over this threshold value leads to a poorer perfor-
mance. This feature derives from the interplay between the
intrinsic noise, whose characteristic frequency depends on
the confinement effort, and the parametric noise of the con-
finement effort exerted on the system. We name this effect
stochastic resonant damping because of its similarities to
stochastic resonance; however, while stochastic resonance is
concerned with the maximization of the SNR �1�, stochastic
resonant damping is concerned with the minimization of the
system output variance. We use a mathematical model that is
linear and exactly solvable, but the main characteristics are
also observed under more arbitrary conditions. We experi-
mentally verify our prediction on a physical model system
based on a colloidal particle held in an oscillating optical
trapping potential. We finally show how stochastic resonant
damping can be useful for the study of phenomena in various
fields.

II. MATHEMATICAL MODEL

We consider a system whose behavior can be described by
the Langevin equation
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ẋ�t� + C�x�t� − x0�t�� = Dh�t� . �1�

The intrinsic noise is driven by a white Gaussian random
process h�t� such that �h�t��=0 and �h�t+��h�t��=����; D
determines the intensity of the noise. The system is con-
strained by the restoring term C�x�t�−x0�t��, whose equilib-
rium position x0�t� can vary over time either deterministi-
cally or randomly. The value C defines the confinement
effort—i.e., a measure of the effort applied to the system for
its confinement.

The choice of this model is motivated by the fact that it is
exactly solvable and readily experimentally implementable.
This permits us to directly compare theoretical and experi-
mental results. As we will see in more detail in the experi-
mental section, Eq. �1� describes an overdamped Brownian
motion in the presence of an oscillating harmonic potential:
x�t� is the position of a Brownian particle with diffusion
coefficient D2 /2 in the presence of a harmonic trapping po-
tential characterized by a fixed stiffness proportional to C
and an oscillating center x0�t�. In the case this potential is
generated by an optical trap, C is proportional to the optical
trapping power and inversely proportional to the viscosity. In
underdamped mechanical systems, such as the Brownian
movement of atomics wave packets in magneto-optical traps,
the trap modulation induces an increase in damping and a
decrease of the spatial extension of the atomic wave packets
�8,9�. Parametrical resonance in underdamped systems �opti-
cally trapped aerosols�, which leads to a decrease of the out-
put noise, was observed by periodical modulation of the
trapping power in �10�. However, previous experiments per-
formed in the overdamped regime �11� have only showed
that the modulation of the trap power by a harmonic signal
increases the variance of the colloidal particle motion. A de-
crease of the particle position variance was achieved in a
modulated optical trap in �12�, but at the expenses of a
higher confinement effort.

We are interested in studying the output variance �x
2 of the

system with modulation of the trap position as a function of
C for a given x0�t�, which can be either a deterministic or a
stochastic function. Solving �1� in the Fourier domain leads
to

X�f� =
DH�f� + CX0�f�

C + i2�f
, �2�

where H�f�, X�f�, and X0�f� are the Fourier transforms of
h�t�, x�t�, and x0�t�. In the absence of modulation—i.e.,
x0�t��0—the power spectral density �PSD� is Px�f�
= �H�f�†H�f��=D2 / �C2+4�2f2�, where the dagger represents
complex conjugation. It describes the intrinsic system noise
in the presence of a confinement potential and is character-
ized by the cutoff frequency fc=C /2�.

Using Parseval’s theorem the system output variance can
be calculated as �x

2=�−�
+��X�f�†X�f��df under the assumption

that �x�t��=0. Considering that �H†H�=1 and the intrinsic
noise h and the modulation signal x0 are uncorrelated—i.e.,
�H†X0�= �X0

†H�=0—we get

�x
2 =

D2

2C
+ 	

−�

+� C2

C2 + 4�2f2 �
X0�f�
2�df , �3�

where the first term represent the intrinsic noise contribution
and the second term the parametric noise contribution. It
follows straightforwardly that the total variance in the exter-
nally modulated system always exceeds the intrinsic noise.
The output response depends on the power spectral density
of x0 describing the movement of the equilibrium position.

First we consider the case when x0�t� is a white Gaussian
random process with �
X0�f�
2�=N2; then,

�x
2 =

D2 + N2C2

2C
. �4�

For increasing confinement effort C, the output variance ini-
tially decreases and then it increases. This behavior can be
explained as follows: while the confinement effort C in-
creases, the intrinsic noise cutoff frequency fc increases as
well and therefore more components of the parametric noise
have a pronounced effect on the system. However, in this
case the power of the noise is infinite, while in the real cases
it is finite. In particular, the output variance in this case di-
verges for C, tending to infinity, while this never happens for
real noises that do have a cutoff frequency. Therefore, in the
following examples we will consider noises with finite vari-
ance.

In the case where the equilibrium position moves har-
monically, �
X0�f�
2�=A2� 1

2��f − f0�+ 1
2��f + f0�� �notice that

its variance is normalized to A2� and

�x
2 =

D2

2C
+ A2 C2

C2 + 4�2f0
2 . �5�

In Fig. 1�a� the system variance �x
2 as a function of C and the

forcing frequency f0 is represented. The �x
2 diverges for van-

ishing C, because the confinement is lost. For very low forc-
ing frequencies �f0�

C
2� � as well as for high forcing frequen-

cies �f0�
C

2� �, �x
2 monotonically decreases with increasing

the confinement effort C. However, there is a range of fre-
quencies f0 when a minimum of the output variance can be
achieved for a finite value of C.

This effect, which we name stochastic resonant damping,
is similar to stochastic resonance. Both indeed are due to a
pseudoresonance between the forcing frequency f0 and a
packet of frequencies from the range of intrinsic frequencies
of the system noise whose cutoff is fc=C /2�. The difference
is that stochastic resonance is concerned with a maximum in
the SNR, while stochastic resonant damping is concerned
with a minimum of the output variance. Interestingly
enough, the two phenomena may occur simultaneously in the
same system, although typically in quite different parameter
regimes; this should be the object of further studies. At a
modulation frequency f0=1 Hz the squeezing of the output
variance is observed at C=2, corresponding to the intrinsic
system noise cutoff frequency fc=1 /� Hz. Figure 2 illus-
trates the counterintuitive aspects of stochastic resonant
damping: while the effort made to increase the confinement
is increased, the system output variance first diminishes
�comparison between Figs. 2�a� and 2�b�� and then starts
growing again �comparison between Figs. 2�b� and 2�c��.
Hence, in this simple case of harmonic modulation of the
equilibrium position the system reveals an unexpected be-
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havior: the more effort �over a certain threshold� is exerted to
confine the system, the less confinement is achieved.

Noises occurring in nature are typically more complex
than a harmonic modulation. Non-Markovian noise sources
can be found in various biological systems �13�, such as
currents through voltage-sensitive ion channels in cell mem-
branes and signals from the sensory system of rat skin
�14–16�. Biological transport phenomena work in the pres-
ence of thermal noise and internal, generally correlated, ran-
dom noise of biological origin, such as the hydrolysis
mechanism Adenosine-Triphosphate �5�. It is therefore im-
portant to analyze also the movement of the equilibrium po-
sition of the system governed by a colored noise. We there-
fore consider the simplest case of a colored Gaussian forcing
with PSD �
X0�f�
2�=A2f0 /��f0

2+ f2� �notice that its variance
is again A2 and f0 is its characteristic frequency�. The system
variance is now

�x
2 =

D2

2C
+ A2 C

C + 2�f0
. �6�

In Fig. 1�b� the system variance �x
2 as a function of C and the

characteristic frequency f0 is represented. The overall behav-
ior is similar to the one presented in Fig. 1�a� for harmonic

forcing. The value of the confinement effort Copt which pro-
vides a minimal variance as a function of the characteristic
frequency f0 and the noise power A2 of x0 is

Copt = � + � for f0A2 	 D2/4� ,

2�f0D/�2��f0A − D� for f0A2 
 D2/4� .


�7�

In Fig. 1�b� the thick curve shows the behavior of Copt.
Until now we have only considered a noise of constant

intensity—i.e., A2=const. If we now explore how the output
variance �x

2 varies as a function of the noise intensity A2, the
�x

2 increases with an increase of the noise intensity A2. We
found that the variance minima becomes deeper as the noise
intensity grows. The depth of the variance minima can be
defined as �x

2�Copt� /�x
2�C= +��. Hence, the present result is

more evident for highly noisy systems.

FIG. 1. Output system variance �x
2 as a function of the confine-

ment effort C �D=1, A=1� for harmonic �a� and colored Gaussian
�b� parametric noise for various values of the frequency f0: from
bottom to top f0=100, 31, 10, 3, 1 �thick curve�, 0.3, 0.1, 0.03, 0.01
Hz. The thick line indicates the �x

2 minima. The shaded area repre-
sents the range of accessible output variance for a given value of the
confinement effort. The additional axis shows the system intrinsic
noise cutoff frequency fc. Insets: a typical example of x0 in time and
frequency domain �f0=1�.

FIG. 2. �Color online� Intrinsic system output �gray filled area�
and system output in the presence of a sinusoidal modulation �f0

=1, D=1, A=1� �red dashed curve� for three states of the system,
indicated by dots in Fig. 1�a� for the modulation frequency f0

=1Hz: �i� C=0.4 �fc=0.064 Hz�, �ii� C=2 �fc=0.32 Hz� corre-
sponding to the absolute variance minimum, and �iii� C=10 �fc

=1.6 Hz�. The output variance always exceeds the intrinsic
variance.
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III. EXPERIMENTAL VERIFICATION

As we anticipated above, a paradigmatic system that be-
haves according to the theory presented is a Brownian par-
ticle held in an oscillating trapping potential. We have there-
fore used such a physical system in order to verify our
predictions. We implemented this system using an optical
trap whose instantaneous center position is controlled by
steering the focused optical beam.

When Eq. �1� describes the Brownian motion of a particle
in an oscillating potential, the parameters have the following
physical meaning: C=k /�, where k is the stiffness of the
trap, � is the friction coefficient of the particle, D
=�2kBT /�, kB=1.3807�10−23 J /K is the Boltzmann con-
stant, �=6�r is the friction coefficient of the particle, r is
the radius of the particle,  is the viscous coefficient of the
liquid, and T is the absolute temperature of the system.

A. Experimental setup

The sample solution was prepared by adding a small
amount of polystyrene beads �radius r=295 nm, Kisker-
Biotech GmbH� to a 10% sodium dodecyl sulfate sterile
aqueous solution. A drop �about 10 �l� of the resulting so-
lution was placed between two coverslips �thickness 80 �m�
separated by a 50-�m spacer and sealed with water-insoluble
silicone vacuum grease to prevent evaporation. This sample
was placed onto a custom-made sample holder on top of an
inverted microscope equipped with an oil immersion micro-
scope objective �100�, NA=1.25, Comar�. The sample was
illuminated from the top with a white light for visualization
by a charge-coupled-device �CCD� camera. The particle con-
centration was sufficiently low to guarantee that there was
only a single particle within the field of view. Three-
dimensional nanometer positioning was achieved by a piezo-
electric stage �Tritor 102, Piezosystem Jena� �see Fig. 3�.

A single bead was trapped by focusing an optical beam
with the objective near the upper coverslip surface in order to
increase the drag force acting of the particle and therefore to
have a more stable trapping. This optical beam was produced

by a laser ��=785 nm, maximum power 95 mW, MicroLa-
serSystem�. Nanometer position detection was achieved us-
ing the forward-scattered light of a second beam, produced
by a low-noise laser ��=635 nm, maximum power 5 mW�;
its power at the sample was kept low in order that this beam
does not affect the trapping of the probe. The forward scat-
tering of the detection beam was collected by a condensator
objective �40�, NA=0.75, UPlanFI� and projected onto a
quadrant photodetector �QPD, New Focus 2911�. The QPD
measured the changes in the interferences pattern and con-
verted them into three signals proportional to the position of
the particle in the trap. These signals were sampled and ac-
quired into a computer by an acquisition card �62621E, Na-
tional Instruments�. The sampling rate was fs=2 kHz. This
is sufficiently higher than the corner frequency of the system
fc and permits us to acquire the dynamics of the particle
motion for the optical trap calibration �17�. In the study of
the variance, since we are measuring the particle position
distributions, we do not need to follow the dynamics of the
particle. Therefore we can use a sampling rate that is much
slower than the noise characteristic frequency.

The modulation of the position of the optical potential
was achieved by an acousto-optical deflector/modulator
�AOM/D ISOMET LS55 NIR�. This was inserted along the
785-nm laser beam path and was used to steer it along the x
direction. The y position of the trap was unaffected. The
AOM/D input voltage was controlled by an arbitrary wave-
form generator �Tabor Electronics WW 5062� which allowed
charging arbitrary signals. The power of the 785-nm beam
before the objective was adjusted between 3 mW and 35 mW
by the AOM/D.

B. Colored Gaussian noise generation

A noisy sequence with any PSD can be generated starting
from a sequence of independent normally distributed random
variables �n �T—i.e., ��n �T�=0 and ��n �T��n+m��T�=��m�,
where n and m are integers and �T is the sampling time. The
most general approach involves �a� applying the Fourier
transformation to the signal �nT, �b� multiplying the resulting
signal by a frequency-domain filter with the desired PSD,
and �c� performing the inverse Fourier transformation of the
resulting signal. The resulting signal has the desired PSD. A
mathematically equivalent approach can be followed in the
time domain by applying a time-domain filter. To generate
the colored Gaussian noise, we used a finite-impulse-
response �FIR� filter of the first order:

x0,�n+1��T = �x0,n�T + A/�1 − �2��n+1��T, �8�

where A is the variance of x0,n�T and � is its autocorrelation.
This filter produces a low-pass signal whose cutoff frequency
depends on the value of T and �: f0=−ln � /�T.

C. Data analysis

First for each value of the trapping power a series of data
was acquired in the absence of modulation with a sampling
rate fs=2 kHz. The stiffness of the optical trap was mea-
sured in the x and y directions using the autocorrelation func-

FIG. 3. �Color online� Experimental setup: O1, 100� objective;
O2, 40� objective; DM1, DM2, and DM3, dichroic mirrors; M,
mirror; AOM/D, acousto-optic modulator/deflector; L1 and L2, op-
tical system for conjugation of the output plane of the acousto-
optical deflector and the entrance pupil of the objective O1; PH,
pinhole; BF, bandpass filter; QPD, quadrant photodetector.
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tion method �17�. Furthermore, we have verified that no
cross correlation between the two directions exists, which
shows that the modulation does not introduce a rotational
force field and that the results along the y direction are inde-
pendent from the data along the x direction �17,18�. The
values of the stiffness constant were found to be linear with
the trapping optical power: kx�ky. In the calibration process
the value of the friction coefficient of the particle � takes into
account the correction of the viscosity coefficient due to the
proximity of the surface �19�.

For each data point in Figs. 4–6 �see below�, 12 data sets
of 10 000 samples were acquired with a sampling rate fs
=2 kHz. The values of the output variances �x

2 and �y
2 are

the average over these data sets. The error bars were calcu-
lated as the standard deviation of the measurements.

IV. EXPERIMENTAL RESULTS

Figure 4�a� illustrates the experimental results obtained
with sinusoidal modulation of the trap center: x0�t�

=�2A sin�2�f0t� with A=100 nm and f0=5, 50, 500, and
5000 Hz. The solid lines represent the theoretical prediction
according to Eq. �5�. The experimental results are in very
good agreement with the theoretical predictions for the entire

FIG. 6. �Color online� Experimental �x
2 as a function of

the noise amplitude. Various sets of values are presented for
A=55 70, 85 nm. The bars represent one standard deviation. The
solid lines represent the theoretical prediction for the experimental
parameters �k=0.7 pN /�m mW� trapping power �mW�, �=1.9
�10−8 Ns /m�. The two additional axes show the value of the con-
finement effort and the corresponding cutoff frequency of the intrin-
sic noise.

FIG. 4. �Color online� �a� Experimental and theoretical �x
2 as a

function of the laser power in the presence of harmonic modulation
of the trap center. From the bottom to the top the various sets of
values correspond to f0=5, 50, 500, 5000 Hz. The bar represents
one standard deviation. The solid lines represent the theoretical pre-
diction for the experimental parameters �k=0.4 pN /�m mW
� trapping power �mW�, �=1.1�10−8 Ns /m, A=100 nm�. The
disagreement between experimental data and theoretical results for
the right end of the 5-Hz data set is observed because for such
values of the confinement effort and intrinsic noise frequency the
trapping potential is not harmonic anymore. �b� Data for the non-
modulated direction y. The two additional axes show the value of
the confinement effort and the corresponding cutoff frequency of
the intrinsic noise.

FIG. 5. �Color online� Experimental and theoretical �x
2 as a

function of the trapping power obtained with colored Gaussian forc-
ing of the equilibrium position. Various sets of values are presented
for f0=5, 500, 50, 5 Hz. The bars represent one standard deviation.
The solid lines represent the theoretical prediction for the experi-
mental parameters �k=0.7 pN /�m mW� trapping power �mW�,
�=1.9�10−8 Ns /m, A=70 nm�. The disagreement between ex-
perimental data and theoretical results for the right end of the 5-Hz
data set is observed because for such values of the confinement
effort and intrinsic noise frequency the trapping potential is not
harmonic anymore. The two additional axes show the value of the
confinement effort and the corresponding cutoff frequency of the
intrinsic noise.
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range of the trapping power, except for very low values. The
maximal value of the dip at the dependence was found at the
modulation frequency f0=50 Hz at the confinement effort of
C=300 s−1 when the corner frequency of the intrinsic noise
of the system is fc=60 Hz. As for the theoretical results, the
modulation frequency to observe the stochastic resonant
damping is higher than fc. Hence, the stochastic resonant
damping has a measurable value when the external source of
modulation induced the movement of the probe with fre-
quencies that are not present in the spectrum of the unmodu-
lated internal motion.

To understand what physical quantities produce such a
phenomenon, we can give an intuitive picture of the situa-
tion. When there is stochastic resonant damping in an over-
damped system, the frequency of the intrinsic noise is such
that in the time it takes the center of the trapping potential to
move from one side to the other the particle has time to
follow it only partially. Again this picture makes it clear that
stochastic resonant damping, such as stochastic resonance, is
not a real resonance, but only a pseudoresonance.

The trap was modulated only along the x direction, and
the y movement of the particle was used to monitor for the
same experimental condition the behavior of the system in
the presence of only the intrinsic noise. As expected, the
system variance �y

2 �Fig. 4�b�� increases with decreasing con-
finement effort and this behavior is independent from the
modulation.

Figure 5�a� illustrates the experimental results for the cor-
related Gaussian modulation of the trap center. In this case
the trap position moves as illustrated in the inset of Fig. 1�b�
with A=70 nm and f0=5, 50, 500, and 5000 Hz. There is
very good agreement between the theoretical and experimen-
tal results. Again, as Fig. 5�b� shows, for the unmodulated
direction the variance grows with decreasing confinement
effort. Finally, in Fig. 6 the dependences of the confinement
with the noise amplitude are presented for A=55, 70, and 85
nm. As was mentioned in the theoretical part, the stochastic

resonant damping decreases with decreasing noise ampli-
tude.

As can be seen in all the experimental figures, the agree-
ment between experimental data and theoretical results gets
worse for very low noise frequency and high confinement
effort. For such parameters the optical trap cannot anymore
be approximated as a harmonic potential; the system tends to
become bistable, and Kramers transitions take place.

V. CONCLUSIONS

Usually in the presence of a background noise an in-
creased effort put in controlling a system stabilizes its behav-
ior. Rarely it is thought that an increased control of the sys-
tem can lead to a looser response and, therefore, to a poorer
performance. Strikingly there are many systems that show
this weird behavior. Examples can be drawn form physical,
biological �20�, and social systems �21�. In scanning probe
microscopy techniques, such as atomic force microscopy or
photonic force microscopy, an increased control over the
probe position does not necessarily improve resolution. In
ecosystems the implementation of conservation policies can
have unintended and perverse consequences �20�. Analo-
gously, in social systems enforcement does not always
achieve the desired effect, such as has been shown in ethnic
and cultural conflicts �21� and economical systems �22,23�.
We propose a simple and general mechanism underlying
such behaviors: such a mechanism, named stochastic reso-
nant damping, can be provided by the interplay between the
background noise and the control exerted on the system.
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